|本期目录/Table of Contents|

[1]巩子坤,何声清.7-14岁儿童随机分布认知发展研究[J].宁波大学学报(教育科学版),2017,39(2):1-006.
 GONG Zi-kun,HE Sheng-qing.Cognitive Development of Randomness Distribution of Children Aged 7-14[J].JORNAL OF NINGBO,2017,39(2):1-006.
点击复制

7-14岁儿童随机分布认知发展研究(PDF)
分享到:

《宁波大学学报》(教育科学版)[ISSN:1008-0627/CN:33-1214/G4]

卷:
第39卷
期数:
2017年2期
页码:
1-006
栏目:
教育心理学
出版日期:
2017-03-16

文章信息/Info

Title:
Cognitive Development of Randomness Distribution of Children Aged 7-14
文章编号:
10080627(2017)02-0001-06
作者:
巩子坤1何声清2
(1.杭州师范大学 理学院,浙江 杭州 310036;2. 北京师范大学 教育学部,北京 100875)
Author(s):
GONG Zi-kun1 HE Sheng-qing2
( 1. School of Sciences, Hangzhou Normal University, Hangzhou 310012, China; 2. Dept. of Education, Beijing Normal University, Beijing 100875, China )
关键词:
-
Keywords:
children random distribution cognitive development teaching and learning implications
分类号:
-
DOI:
-
文献标志码:
A
摘要:
以771名7-14岁儿童为被试,考察了其随机分布认知发展。研究表明,儿童随机分布认知出现了“地板效应”:整体处于萌芽阶段,即便是发展最高峰的8岁、10岁,得分率也只有13%左右。儿童认知水平总体很低,也没有出现发展的重要时期。导致儿童随机分布认知水平很低的主要原因是,儿童从有限的概率知识与生活经验出发,遵循了“绝对均匀分布”与“绝对集中”两个规律,而这些规律都不是概率的规律。教学建议如下:总体而言,随机分布这部分内容不适合进入义务教育阶段,但可以作为比较聪明儿童的课外兴趣活动内容,并通过试验的方式来学习这部分内容。
Abstract:
This study chose 771 children aged 7-14 as subjects to explore the cognitive development of random distribution. The results indicated that there is a floor effect in children’s cognition of random distribution in only 13 percent even in the prime cognition age of 8 and 10, and children’s cognition turns out low without vital developmental stage to be found in that they take the false principles of absolute uniform distribution and absolute central distribution based on their experience and knowledge. This implied that the contents in random distribution are illegible to children’s compulsory education but can be learnt by smart teenagers in extracurricular activities.

参考文献/References:

[1].GAL I. Towards “Probability Literacy” for all citizens: Building blocks and instructional dilemmas[M]// G A Jones (Ed.), Exploring probability in school: Challenges for teaching and learning. New York: Springer, 2005: 82-95.
[2].SHARMA S. Cultural influences in probabilistic thinking[J]. Journal of Mathematics Research, 2012, 4 (5): 63-77.
[3].YOST P, SIEGEL A E, ANDREWS J N. Non-verbal probability judgement by young children[J]. Child Development, 1962,33: 769-780.
[4].GOLDBERG E. Probability judgments by preschool children: task conditions and performance[J]. Child Development, 1966,37: 157-167.
[5].KUZMAK S D, GELMAN R. Young children’s understanding of random phenomena[J]. Child Development, 1986, 57: 559-566.
[6].SHAUGHNESSY J M. Research on statistics learning and reasoning[M]//F. K. Lester(Jr Ed.), Second Handbook of Research on Mathematics Teaching and Learning. Reston: The National Council of Teachers of Mathematics, 2007: 910-920.
[7].ZIMMERMANN G M, JONES G A. Probability simulation: What meaning does it have for high school students[J]. Canadian Journal of Science, Mathematics and Technology Education, 2002, 2(2): 221-236.
[8].PRATT D. How do teachers foster students’ understanding of probability[M]// G. A. Jones (Ed.), Exploring probability in school: Challenges for teaching and learning . New York: Springer, 2005: 28-35.
[9].TRURAN K M. Children’s understandings of random generators[M]// C. Beesey D. Rasmussen (Eds.), Mathematics Without Limits, Proceedings of the 31st Annual Conference of the Mathematical Association of Victoria. Melbourne, 1994: 38-42.
[10].WATSON J M, MORITZ J B. The development of comprehension of chance language: evaluation and interpretation[J]. School Science and Mathematics, 2003, 103: 65-80.
[11].GREEN D R. A survey of probability concepts in 3000 students aged 11-16 years[M]//D. R. Grey (ed.), Proceedings of the First International Conference on Teaching Statistics, Teaching Statistics Trust. University of Sheffield, 1982: 126- 138.
[12].FISCHBEIN E. Schemata and intuition in combinatorical reasoning [J]. Educational Studies in Mathematics, 1997, 34: 27-47.
[13].FISCHBEIN E. The Intuitive Sources of Probabilistic Thinking in Children[M]. Reidel: Dordrecht-Holland, 1975: 89.
[14].ENGEL J, SEDLMEIER P. On middle-school students’ comprehension of randomness and chance variability in data[J]. ZDM, 2005, 37(3): 168-177.
[15].]LECOUTRE M P. Cognitive models and problem spaces in “purely random” situations[J]. Educational Studies in Mathematics, 1992,23: 557-568.
[16].SHARMA S. Statistical ideas of high school students: Some findings from Fiji[M]. Unpublished doctoral thesis. Waikato University, Hamilton, New Zealand, 1997: 265-268.
[17].KONOLD C, POLLATSEK A, WELL A, LOHMEIER J, LIPSON A. Inconsistencies in students’ reasoning about probability[J]. Journal for Research in Mathematics Education, 1993,24: 392-414.
[18].GREEN D R. Children’s understanding of randomness[M]. In R. Davidson & J. Swift (eds.), Proceedings of the Second International Conference on Teaching Statistics. Victoria, British Columbia, 1986: 268-276.
[19].PIAGET J, INHELDER B. The oringin of the idea of chance in students [M]. New York: Norton, 1975: 28-32.
[20].COPELAND R. How do children learn mathematics?[M]. Shanghai: Shanghai Educational Publishing House, 1985: 2-5.
[21].巩子坤, 宋乃庆. 统计与概率的教与学: 反思与建议[J].人民教育, 2006(10): 1-6.
[22].史宁中, 张丹, 赵迪. “数据分析观念”的内涵及教学建议[J].课程教材教法, 2008,28(6): 40-44.

备注/Memo

备注/Memo:
第一 收稿日期:2016-12-10基金项目:浙江省哲学社会科学规划课题“儿童的概率概念认知策略及其发展研究”(16NDJC004Z);教育部人文社会科学研究规划基金项目“6-15岁儿童的概率概念认知策略及其发展研究”(15YJA880020)
作者简介:巩子坤(1966-),男,山东滕州人,教授/博士,主要研究方向:数学学习心理。E-mail:zkgong@163.comSheet3
更新日期/Last Update: 2017-03-20